If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-45x+5x^2-150=0
a = 5; b = -45; c = -150;
Δ = b2-4ac
Δ = -452-4·5·(-150)
Δ = 5025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5025}=\sqrt{25*201}=\sqrt{25}*\sqrt{201}=5\sqrt{201}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-5\sqrt{201}}{2*5}=\frac{45-5\sqrt{201}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+5\sqrt{201}}{2*5}=\frac{45+5\sqrt{201}}{10} $
| 10p+21=51 | | 2x-3(x+6=-4(x-1) | | x/4=1=10 | | x-65=-61 | | 8u-26=22 | | -x-x(6x+21)=12 | | -9n-4=-76 | | 35x+100=12x+80 | | 15x+30-3x-3=1 | | 4x+3+145=180 | | 5+2k=17 | | s+505=854 | | 3x-15+x33=180 | | 86d=774 | | 16=n/4+12 | | 4(1+-x)+3x=-2x2 | | -11j=803 | | 4x+9-12x=5x+18-17x+9 | | q-128=38 | | x-33=-28 | | 16=n4+12 | | 3-9x=120 | | k/28=-21 | | 5/8x-3/15=1/2-5/4x | | 3x2−9=2 | | 18.7=p-(-17) | | 11x-2x-7-4x=7 | | 81=8v+v | | z-3.6=13.47 | | w/(-1)=-1.29 | | 0.3(10x+24)=3.7(0.2x+5) | | 13x+4x=-17 |